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Abstract. We investigate by random-walk simulations and a mean-field theory how growth by biased
addition of nodes affects flow of the current through the emergent conducting graph, representing a digital
circuit. In the interior of a large network the voltage varies with the addition time s < t of the node as
V (s) ∼ ln(s)/sθ when constant current enters the network at last added node t and leaves at the root of
the graph which is grounded. The topological closeness of the conduction path and shortest path through
a node suggests that the charged random walk determines these global graph properties by using only
local search algorithms. The results agree with mean-field theory on tree structures, while the numerical
method is applicable to graphs of any complexity.

PACS. 89.75.Hc Networks and genealogical trees – 05.40.Fb Random walks and Levy flights – 89.20.-a
Interdisciplinary applications of physics

Networks, which are adequately represented by random
graphs, invade all sciences [1–3]. In a classical approach,
random graph theory deals with linking in a static graph
with a given number of nodes [4]. Recently dynamically
evolving networks came into focus [2,3] representing con-
nections in complex dynamical systems, e.g., metabolic
or protein networks, and realistic social and technologi-
cal networks, Internet and the Web, which are not static
but evolve in time. Details of the growth rules, in which
new and/or preexisting nodes are linked to the network,
determine the graph topology that emerges after long evo-
lution time. In the class of scale-free networks preference
attachment rules lead to power-law degree distributions of
incoming and outgoing links [2,3,5].

Conducting networks, such as electrical or electronic
circuits are of particular importance for technology. A
common technological network—digital circuit—consists
of logic gates, as nodes, and wires in a broad sense, as
links [6]. Technology advance with integration and minia-
turization allows digital circuits to grow in size and com-
plexity in order to optimize their function and stability.
It was shown recently [6] that electronic circuits exhibit a
scale-free link structure up to a cut-off size. So far, elec-
trical properties of growing conducting networks have not
received much attention in the literature.

Here we adapt the random-walk dynamics and mean-
field theory to study for the first time how the growth
of a conducting network interferes with the current flow
through the underlying evolving graph. In particular, we
study voltage distribution per node when the unit exter-
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nal current flows through the network of conducting links,
which are systematically added in time and attached to
the network with a preferential rule. We grow a network
and let the constant current flow into last-added node and
leave the graph at its root (first node), which is kept at
zero potential. Compared to the static case, in the emer-
gent graph structure the time when a node was added to
the graph determines how it will be connected. By subse-
quent addition of nodes both number of links grows and a
new structure emerges among preexisting nodes, making
the conduction path between last-added node and root
fluctuate. These features affect conduction on an evolving
network that we address in this work. To elucidate all as-
pects of the evolution, we simulate suitable random walks
on networks of several sizes N , i.e., after t = N = 2k×500
added nodes, k = 0, · · · , 4, and determine the universal
voltage curve that solely depends on time when the node
was added to the graph. For the graphs with tree struc-
ture we develop a mean-field theory which qualitatively
describes the numerical data.

Starting from the first node, the network grows by ad-
dition of one node and one link per time step. The link is
directed to one of preexisting nodes s with the probabil-
ity pin(s, t) = α+qin(s,t)

(1+α)t , where α ≤ 1 is a parameter and
qin(s, t) is the number of in-links of the recipient node s
at the moment t. Similarly, in the general case an out-link
at time t occurs from new added node with probability
g, whereas with 1 − g it is a rewiring link from an earlier
node, which is selected with probability [5] pout(s, t) =
α+qout(s,t)

(1+α)t . By solving the corresponding rate equations
with the right boundary conditions qin(s, s = t) = 0, and
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Fig. 1. A network growing with the preference rule shown after
39 steps. Distance of a node (small circle) from the very first
node in the center illustrates the moment of its addition to the
network. Current flows along the conduction path (bold line)
from the most recent node on the left towards the center. The
clusters of nodes meet the conduction path at junction nodes
which are shown by bullets.

qout(s, s = t) = g, we have that the number of links per
node increases in time as

qκ(s, t) = Aκ

[(
t

s

)γκ

− Bκ

]
. (1)

Here index κ means ‘in’ or ‘out’ and the correspond-
ing constants are Ain = α, Bin = 1, Aout = α + g,
Bout = α/((α + g), and the exponents γin = 1/(1 + α)
and γout = (1 − g)/(1 + α), respectively. Note that for
g < 1 rewiring among the preexisting nodes occurs, which
is the mechanism that leads to the hierarchical structure
of out-links, as demonstrated for instance in the model of
the world-wide Web [5]. In this case a number of closed
cycles on the graph occurs. For g = 1, however, we are left
with tree structure of the graph and equation (1) for out-
links reduces to qout(s, t) = α at all nodes in the network.
In what follows we will mainly discuss the case g = 1 and
α = 1 where we have [7] q(s, t) = qin(s, t) + 1 =

(
t
s

)1/2.
We grow an ensemble of networks with these parameters
on computer (an example with first 39 nodes is shown in
Fig. 1). The computed average number of links q(s, t) per
node after t = N = 8 × 103 evolution steps is shown as
top curve in Figure 2, which agrees well with the exact
expression in equation (1). As the network grows we fix
the elements of the adjacency matrix Â, so that after N
steps we have an N × N matrix with elements axy = 1
when a link x → y occurs, and zero otherwise. Here we
assume that these links are conducting in both directions.

An electrical network can be regarded as a graph in
which the resistance Rxy is associated to the edge (link)
between each pair of connected nodes x → y. When two
points (nodes) a and b of the graph are connected to poles
of a battery, the current and the voltage in the interior
of the graph are governed by the Kirchhoff’s laws. In
particular, when the potential difference occurs between
points x and y, the current is given by the Ohm’s law
ixy = (Vx − Vy)Cxy, where Cxy = 1/Rxy is the conduc-
tance of the respective link. By the Kirchhoff’s current
law total current outflow from any point in the interior is

Fig. 2. Average total degree q(s, N) = 1 + qin(s,N) per
node (top), number of visits u(s, N) (middle) and voltage
V (s, N) (bottom) per node against time s when the node
was added to the network with N = 8000 added nodes. Also
shown are exact result q(s,N) = (N/s)1/2 (dotted line) and
fits u(s, N) = 33.6s−0.58 exp [−1.4(s/N)3], and V (s, N) =
0.142 ln (s)s−0.23 exp [−1.3(s/N)4]. Exact value V (s = 1) = 0
was moved to a finite 10−2 to enable presentation on the loga-
rithmic scale. Data for u(s, N) and V (s, N) normalized to total
number of walkers and log-binned.

zero,
∑

y ixy = 0, we then find for the voltage

Vx =
∑

y

VyCxy/Cx. (2)

where Cx =
∑

y Cxy and the sum is over all nodes y which
are connected to x.

The averaging property expressed by equation (2) im-
plies that the voltage is a harmonic function on the in-
terior points of the graph. This makes the basis for the
probabilistic interpretation of the voltage [4,8]. Namely,
one can define another harmonic function, e.g., by using
the random walk [9] on the graph, with the same bound-
ary values. The random walk determined by the electrical
network is defined as an (ergodic reversible) Markov chain
with the transition probabilities Pxy that are weighted
with the conductances as Pxy = Cxy/Cx. Then, when the
constant voltage is applied to the graph such that Va = 1
and Vb = 0, the voltage in an interior point x is deter-
mined as the hitting probability hx that a walker staring
at x reaches the point a before reaching b. In the scenario,
which we also use in this work, when a constant current
flows into the network at the point a and leaves at b the
walk begins at a and is trapped when it reaches point b.
The harmonic function which is equivalent to the voltage
is then given by [4,8] Vx = ux/Cx, where ux =

∑
y uyPyx

is the expected number of visits of the walker to point x
before it reaches b. Consequently, the current between in-
terior points x and y is given by the net number of walks
along the link between these two points.

In the network evolving for t = N steps we apply the
unit current flowing into the network at the last-added
node (a ≡ t) and leaving it at the first-added node (b ≡ 1).
We assume that all resistances are equal Rxy = 1 and the
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walker moves both along out-links and against in-links
with equal probability. Therefore Cx = q(x, t), the total
number of links attached to node x at time t. Hence the
voltage at node x is

V (x, t) = 〈u(x, t)/q(x, t)〉, (3)

where u(x, t) is the number of visits at x made by the
walkers starting at last node t before they are trapped
at node 1. The averaging in equation (3) is over entire
ensemble of walkers. As mentioned above, we simulate
random walks after t = N = 2k × 500, k = 0, 1, · · · , 4
evolution steps. We generate 400 different networks of the
same size N and use 200 walkers at each network realiza-
tion, hence the voltage in equation (3) is determined using
80 000 walkers. (Note that the simulated voltage appears
to be normalized by a constant L ∼ ln (N) related to the
average length of the conduction path.) The results for the
network after N = 8000 added nodes are given in Figure 2.

The power-law dependence of the average degree
q(s, N) on addition time s of a node (cf. Fig. 2 and Eq. (1))
manifests the basic property of the evolving networks with
emergent scale-free structure, where the most connected
nodes are those added to the network at earlier stages of
the growth. It appears that the average number of visits
per node also exhibits a power-law decay with the time of
addition s with an exponent θu ≈ 0.58(3) (see Fig. 2). A
sharp exponential cut-off at recently added nodes s ≤ N
suggests lack of links, that will appear only in later stages
as the network continues to grow. We find the same finite-
size effect on the voltage curve. However, the power-law
dependence here is modified by a logarithmic term. Apart
from the last point s = N where (normalized) voltage is
V (N, N) = 1, the approximate expression fits the data for
1 ≤ s ≤ N − 1 as (see Fig. 3)

V (s, t = N) = D(N) ln (s)s−θ exp [−1.3(s/N)4] . (4)

Here D(N) ∼ 1/ ln (N) and θ ≈ 0.25 ± 0.04 for the range
of network sizes N used in this simulations. In Figure 3
are shown separate fits for several simulated network sizes
N . The finite-size (finite evolution time) effects can be
adequately dealt with by rescaling of the respective curves
by f(s/N) = exp [1.3(s/N)4]/ ln (N). The master curve
representing the scaled voltage as function of s is shown
in Figure 3 (top panel).

The curvature of the universal voltage curve at early
nodes and a subsequent decay with the addition time s
can be related to the growth process as follows. Due to
the preference linking often a direct link from the high-
voltage node N is attracted by the group of nodes near
the root, thus ‘pumping’ voltage to these nodes. (Note
that in the absence of loops voltage decays linearly with
the number of junctions along the conduction path, while
the actual position of the conduction path fluctuates with
node addition). On the other hand, the increase of the
voltage is compromised by highly probable linking of the
early nodes to the root node 1. For large evolution times
the cluster of nodes having a path to node 1 grows faster
compared to clusters linked to other junction points along

Fig. 3. Lower panel: Average voltage per node V (s, N)×ln (N)
vs. addition time s < N obtained by random walks on networks
after N = 500, 1000, 2000, 4000, and 8000 added nodes (bot-
tom to top). Full lines: respective fits according to equation (4).

Top panel: Scaled voltage per node, normalized by D(N). Full
line: y = 0.02(1−1/s)+0.135 ln (s)s−0.25. Data are log-binned.

the conduction path (see Fig. 1). Hence for large s < N
the probability increases for a node s to belong to the
dominant cluster, which has zero voltage.

In the mean-field approach a network of t nodes can be
regarded as consisting of M ≈ ln (t) layers of nodes, where
each layer is defined by the distance from the first node
in the origin d(x → 1) = i = 1, 2, · · ·M . Here the distance
d(x → 1) is defined by number of links separating a node
x and node 1. The conduction path from last added node
to the origin cats through these layer making one junction
point ji at each layer. It is clear that a node which belongs
to layer i is linked to a node on preceding layer i − 1.
However, while the network grows a node added at time
t may be attached to one of the already existing layers.
Hence, the population of layers Ri grows in time following
precisely the above biased attachment rule, which leads to
the rate equation [10]

dRi+1

dt
=

(Ri+1/Ri + α)Ri

t(1 + α)
, (5)

with the initial condition R0 = 1. The system (5) can be
solved recursively yielding

Ri(t) = (−α)i + tχ
i−1∑
�=0

Ki−�

�!

(
α ln (t)
1 + α

)�

, (6)

where χ = 1/(1+α) = 1/2 in the present case. The condi-
tion that

∑m
i=0 Ri(t) = t = em at current moment of time

t, leads to the recursion relation between the coefficients.
For instance, for α = 1 we have Km = em/2 − e−m/2(1 +
(−1)m)/2 −∑m−1

�=1 Km−�

∑�
κ=0(m/2)κ/κ!.
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Now consider a subgraph Gs at the moment s < t of
the graph Gt grown for t steps. The number of nodes in
the subgraph Gs, x ≤ s that are on the distance strictly
larger than a given distance i, d(x → 1) > i, is n(d(x →
1) > i) = s − ∑i

k=0 Rk(s). Then the probability that
the node added at the moment s is among them reads
Prob(d(s → 1) > i) = 1 −∑i

k=1 Rk(s)/s. In addition, if
that node is on a path that hits the conduction path at
a junction above layer i, then it has the voltage Vs > i.
Then the probability of voltage Vs > i is

Prob(Vs > i) =

(
1 −

i∑
k=1

Rk(s)/s

)
/Ri+1(t) , (7)

where, for short, Vs ≡ V (s, t). Notice that the conduction
path is set by addition of the last node t in the entire
graph. Therefore the probability 1/Ri+1(t) that the path
from s to 1 does not miss the junction point on (i + 1)th
layer depends on the population of that layer at the mo-
ment t. Combining the two probabilities we have

Prob(Vs = i) = Prob(Vs > i − 1) − Prob(Vs > i) , (8)

and the average voltage is given by Vs =
∑M

i=0 iProb(Vs =
i). Expanding the sum and using the corresponding ex-
pressions for Ri(s) for α = 1 we find Vs ≈ c0(1 − 1/s) +
c1s

−1/2 ln (s) + c2s
−1/2(ln (s))2 + · · · . Here ck depend on

number of nodes t. In particular, c0 decreases for large
t and additional higher-order terms ln (s)k appear. This
series contributes to the effectively reduced exponent of s
below 1/2, that justifies the approximate fitting expres-
sion given in caption to Figure 3 (top). More details will
be given elsewhere [10].

The simulated probability distribution of voltage ob-
tained by the random-walk statistics is shown in Figure 4.
It can be fitted with a stretched-exponential function. The
probability distribution of survival time tw of the random
walk before trap, P (tw), and of the frequency of visit u of
walkers to a given node, P (u), appear to have power-law
dependences with cut-offs, the latter resembling closely
the topology of shortest paths on the graph [11].

We have demonstrated how the electrical properties
of an emergent graph are shaped by the nature of link-
ing processes governing growth of the network. This es-
tablishes technologically relevant link between, e.g., con-
duction of complex digital circuits and the way that they
are grown. The main results are summarized in the de-
pendence of the voltage distribution per node inside the
graph on the addition time of the node to the network.
Our mean-field theory qualitatively describes the numeri-
cal data for the scale-free graphs with tree structure con-
sidered in this work. On the level of the random walk with
a trap, which is determined by the electrical network, the
observed voltage distribution can be related to power-law
dependences of the wandering time of the walk and num-
ber of visits to a given node. As a side result we have
shown that the universal scaling exponent of the distribu-
tion of visits of our “charged” random walk, which uses
local navigation rules, coincide with the ones of the distri-
bution of shortest paths through a node, for which costly

Fig. 4. Probability distribution P (X) of voltage X ≡ V ,
and of number of visits u and elapsed time before trap tw

of random walkers on the network with N = 103 nodes.
Solid lines: fits P (V ) = P0V

−0.8 exp (−V 0.9/3.8), and P (tw) =
P0t

−0.75
w exp (−tw/N), with P0 = 11 × 103 and a power-law fit

of the part of P(u) curve with slope 2.25±0.015.

global navigation is necessary. Thus, close relationship be-
tween minimal path and conduction path on an electrical
network suggests potential use of “charged” random walk
to determine global topological properties by using local
search algorithms only. The numerical method is applica-
ble to graphs of any link complexity, for instance as given
by equation (1).
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